Tree
Tree block.
A Tree chart is a visualization to hierarchically show the data. For demonstration purposes, the “energy” dataset can be used. The javascript code is forked from Mike Bostock, inspired by R-Shiny and then Pythonized.
- param df:
- Input data containing the following columns:
‘source’, ‘target’, ‘weight’
- type df:
pd.DataFrame()
- param hierarchy:
Expand or substract the hierarchical structure. No information is lossed. The eight branches are shown by default. * [1, 2, 3, 4, 5, 6, 7, 8]
- type hierarchy:
list
- param margin:
- margin, in pixels.
{“top”: 40, “right”: 10, “bottom”: 10, “left”: 10}
- type margin:
dict.
- param font:
- font properties.
{‘size’: 10}
- type font:
dict.
- param title:
- Title of the figure.
‘Treemap’
- type title:
String, (default: None)
- param filepath:
File path to save the output.
Temporarily path: ‘d3blocks.html’
Relative path: ‘./d3blocks.html’
Absolute path: ‘c://temp//d3blocks.html’
None: Return HTML
- type filepath:
String, (Default: user temp directory)
- param figsize:
- Size of the figure in the browser, [width, height].
[1000, 600]
[None, None]: Use the screen resolution.
- type figsize:
tuple
- param showfig:
True: Open browser-window.
False: Do not open browser-window.
- type showfig:
bool, (default: True)
- param overwrite:
True: Overwrite the html in the destination directory.
False: Do not overwrite destination file but show warning instead.
- type overwrite:
bool, (default: True)
- param notebook:
True: Use IPython to show chart in notebook.
False: Do not use IPython.
- type notebook:
bool
- param save_button:
True: Save button is shown in the HTML to save the image in svg.
False: No save button is shown in the HTML.
- type save_button:
bool, (default: True)
- param reset_properties:
True: Reset the node_properties at each run.
False: Use the d3.node_properties()
- type reset_properties:
bool, (default: True)
- returns:
d3.node_properties (DataFrame of dictionary) – Contains properties of the unique input label/nodes/samples.
d3.edge_properties (DataFrame of dictionary) – Contains properties of the unique input edges/links.
d3.config (dictionary) – Contains configuration properties.
Examples
>>> # Load d3blocks
>>> from d3blocks import D3Blocks
>>> #
>>> # Initialize
>>> d3 = D3Blocks()
>>> #
>>> # Load example data
>>> df = d3.import_example('energy')
>>> #
>>> # Plot
>>> d3.tree(df)
>>> #
Examples
>>> # Load library
>>> from d3blocks import D3Blocks
>>>
>>> # Initialize
>>> d3 = D3Blocks(verbose='info', chart='tree', frame=False)
>>>
>>> # Import example
>>> df = d3.import_example('energy')
>>>
>>> # Set node properties
>>> d3.set_node_properties(df)
>>>
>>> # Set specific properties
>>> d3.node_properties.get('Bio-conversion')['size'] = 30
>>> d3.node_properties.get('Bio-conversion')['color'] = '#000000'
>>> d3.node_properties.get('Bio-conversion')['tooltip'] = 'Title: P Operations<br><img src="https://source.unsplash.com/collection/385548/150x100">'
>>> d3.node_properties.get('Bio-conversion')['edge_color'] = '#00FFFF'
>>> d3.node_properties.get('Bio-conversion')['edge_size'] = 5
>>> d3.node_properties.get('Bio-conversion')['opacity'] = 0.4
>>>
>>> # Set properties for Losses
>>> d3.node_properties.get('Losses')['color'] = '#FF0000'
>>> d3.node_properties.get('Losses')['size'] = 15
>>> d3.node_properties.get('Losses')['tooltip'] = ''
>>>
>>> # Set properties for Agriculture
>>> d3.node_properties.get('Agriculture')['color'] = '#00FFFF'
>>> d3.node_properties.get('Agriculture')['size'] = 5
>>> d3.node_properties.get('Agriculture')['edge_color'] = '#89CFF0'
>>> d3.node_properties.get('Agriculture')['edge_size'] = 3
>>> d3.node_properties.get('Agriculture')['opacity'] = 0.7
>>>
>>> # Set edge properties
>>> d3.set_edge_properties(df)
>>>
>>> # Show chart
>>> d3.show(hierarchy=[1, 2, 3, 4, 5, 6, 7, 8], filepath=r'c://temp//tree.html')
Examples
>>> # Load d3blocks
>>> from d3blocks import D3Blocks
>>> #
>>> # Initialize
>>> d3 = D3Blocks(chart='tree', frame=True)
>>> #
>>> # Import example
>>> df = d3.import_example('energy')
>>> #
>>> # Node properties
>>> d3.set_node_properties(df)
>>> print(d3.node_properties)
>>> #
>>> d3.set_edge_properties(df)
>>> print(d3.edge_properties)
>>> #
>>> # Show the chart
>>> d3.show()
References
Input Data
The input dataset is a DataFrame that is hierarchically ordered from left to right. The number can be 3 levels and the column weight is obligatory.
# source target weight
# 0 Agricultural 'waste' Bio-conversion 124.729
# 1 Bio-conversion Liquid 0.597
# 2 Bio-conversion Losses 26.862
# 3 Bio-conversion Solid 280.322
# 4 Bio-conversion Gas 81.144
# .. ... ... ...
# 63 Thermal generation District heating 79.329
# 64 Tidal Electricity grid 9.452
# 65 UK land based bioenergy Bio-conversion 182.010
# 66 Wave Electricity grid 19.013
# 67 Wind Electricity grid 289.366
# [68 rows x 3 columns]